首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   0篇
航空   34篇
航天技术   12篇
航天   15篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2014年   3篇
  2012年   1篇
  2011年   2篇
  2009年   4篇
  2008年   3篇
  2007年   6篇
  2006年   1篇
  2004年   1篇
  2001年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1969年   2篇
  1968年   1篇
排序方式: 共有61条查询结果,搜索用时 46 毫秒
21.
The STARDUST Discovery mission will collect samples of cometary coma and interstellar dust and return them to Earth. Five years after launch in February 1999, coma dust in the 1- to 100-micrometers size range will be captured by impact into ultra-low-density silica aerogel during a 6 kms-1 flyby of Comet Wild 2. The returned samples will be investigated at laboratories where the most critical information on these primitive materials is retained. The Jet Propulsion Laboratory will provide project management with Lockheed Martin Astronauts as the spacecraft industrial partner. STARDUST management will aggressively and innovatively achieve cost control through the use of Total Quality Management principles, the chief of which will be organization in a Project Engineering and Integration Team that "flattens" the traditional hierarchical structure by including all project elements from the beginning, in a concurrent engineering framework focusing on evolving Integrated Mission Capability.  相似文献   
22.
D. J. McComas  E. R. Christian  N. A. Schwadron  N. Fox  J. Westlake  F. Allegrini  D. N. Baker  D. Biesecker  M. Bzowski  G. Clark  C. M. S. Cohen  I. Cohen  M. A. Dayeh  R. Decker  G. A. de Nolfo  M. I. Desai  R. W. Ebert  H. A. Elliott  H. Fahr  P. C. Frisch  H. O. Funsten  S. A. Fuselier  A. Galli  A. B. Galvin  J. Giacalone  M. Gkioulidou  F. Guo  M. Horanyi  P. Isenberg  P. Janzen  L. M. Kistler  K. Korreck  M. A. Kubiak  H. Kucharek  B. A. Larsen  R. A. Leske  N. Lugaz  J. Luhmann  W. Matthaeus  D. Mitchell  E. Moebius  K. Ogasawara  D. B. Reisenfeld  J. D. Richardson  C. T. Russell  J. M. Sokół  H. E. Spence  R. Skoug  Z. Sternovsky  P. Swaczyna  J. R. Szalay  M. Tokumaru  M. E. Wiedenbeck  P. Wurz  G. P. Zank  E. J. Zirnstein 《Space Science Reviews》2018,214(8):116
The Interstellar Mapping and Acceleration Probe (IMAP) is a revolutionary mission that simultaneously investigates two of the most important overarching issues in Heliophysics today: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. While seemingly disparate, these are intimately coupled because particles accelerated in the inner heliosphere play critical roles in the outer heliospheric interaction. Selected by NASA in 2018, IMAP is planned to launch in 2024. The IMAP spacecraft is a simple sun-pointed spinner in orbit about the Sun-Earth L1 point. IMAP’s ten instruments provide a complete and synergistic set of observations to simultaneously dissect the particle injection and acceleration processes at 1 AU while remotely probing the global heliospheric interaction and its response to particle populations generated by these processes. In situ at 1 AU, IMAP provides detailed observations of solar wind electrons and ions; suprathermal, pickup, and energetic ions; and the interplanetary magnetic field. For the outer heliosphere interaction, IMAP provides advanced global observations of the remote plasma and energetic ions over a broad energy range via energetic neutral atom imaging, and precise observations of interstellar neutral atoms penetrating the heliosphere. Complementary observations of interstellar dust and the ultraviolet glow of interstellar neutrals further deepen the physical understanding from IMAP. IMAP also continuously broadcasts vital real-time space weather observations. Finally, IMAP engages the broader Heliophysics community through a variety of innovative opportunities. This paper summarizes the IMAP mission at the start of Phase A development.  相似文献   
23.
Every year in fall and spring the Interstellar Boundary Explorer (IBEX) will observe directly the interstellar gas flow at 1 AU over periods of several months. The IBEX-Lo sensor employs a powerful triple time-of-flight mass spectrometer. It can distinguish and image the O and He flow distributions in the northern fall and spring, making use of sensor viewing perpendicular to the Sun-pointing spin axis. To effectively image the narrow flow distributions IBEX-Lo has a high angular resolution quadrant in its collimator. This quadrant is employed selectively for the interstellar gas flow viewing in the spring by electrostatically shutting off the remainder of the aperture. The operational scenarios, the expected data, and the necessary modeling to extract the interstellar parameters and the conditions in the heliospheric boundary are described. The combination of two key interstellar species will facilitate a direct comparison of the pristine interstellar flow, represented by He, which has not been altered in the heliospheric boundary region, with a flow that is processed in the outer heliosheath, represented by O. The O flow distribution consists of a depleted pristine component and decelerated and heated neutrals. Extracting the latter so-called secondary component of interstellar neutrals will provide quantitative constraints for several important parameters of the heliosheath interaction in current global heliospheric models. Finding the fraction and width of the secondary component yields an independent value for the global filtration factor of species, such as O and H. Thus far filtration can only be inferred, barring observations in the local interstellar cloud proper. The direction of the secondary component will provide independent information on the interstellar magnetic field strength and orientation, which has been inferred from SOHO SWAN Ly-α backscattering observations and the two Voyager crossings of the termination shock.  相似文献   
24.
The Geology of Mercury: The View Prior to the MESSENGER Mission   总被引:1,自引:0,他引:1  
Mariner 10 and Earth-based observations have revealed Mercury, the innermost of the terrestrial planetary bodies, to be an exciting laboratory for the study of Solar System geological processes. Mercury is characterized by a lunar-like surface, a global magnetic field, and an interior dominated by an iron core having a radius at least three-quarters of the radius of the planet. The 45% of the surface imaged by Mariner 10 reveals some distinctive differences from the Moon, however, with major contractional fault scarps and huge expanses of moderate-albedo Cayley-like smooth plains of uncertain origin. Our current image coverage of Mercury is comparable to that of telescopic photographs of the Earth’s Moon prior to the launch of Sputnik in 1957. We have no photographic images of one-half of the surface, the resolution of the images we do have is generally poor (∼1 km), and as with many lunar telescopic photographs, much of the available surface of Mercury is distorted by foreshortening due to viewing geometry, or poorly suited for geological analysis and impact-crater counting for age determinations because of high-Sun illumination conditions. Currently available topographic information is also very limited. Nonetheless, Mercury is a geological laboratory that represents (1) a planet where the presence of a huge iron core may be due to impact stripping of the crust and upper mantle, or alternatively, where formation of a huge core may have resulted in a residual mantle and crust of potentially unusual composition and structure; (2) a planet with an internal chemical and mechanical structure that provides new insights into planetary thermal history and the relative roles of conduction and convection in planetary heat loss; (3) a one-tectonic-plate planet where constraints on major interior processes can be deduced from the geology of the global tectonic system; (4) a planet where volcanic resurfacing may not have played a significant role in planetary history and internally generated volcanic resurfacing may have ceased at ∼3.8 Ga; (5) a planet where impact craters can be used to disentangle the fundamental roles of gravity and mean impactor velocity in determining impact crater morphology and morphometry; (6) an environment where global impact crater counts can test fundamental concepts of the distribution of impactor populations in space and time; (7) an extreme environment in which highly radar-reflective polar deposits, much more extensive than those on the Moon, can be better understood; (8) an extreme environment in which the basic processes of space weathering can be further deduced; and (9) a potential end-member in terrestrial planetary body geological evolution in which the relationships of internal and surface evolution can be clearly assessed from both a tectonic and volcanic point of view. In the half-century since the launch of Sputnik, more than 30 spacecraft have been sent to the Moon, yet only now is a second spacecraft en route to Mercury. The MESSENGER mission will address key questions about the geologic evolution of Mercury; the depth and breadth of the MESSENGER data will permit the confident reconstruction of the geological history and thermal evolution of Mercury using new imaging, topography, chemistry, mineralogy, gravity, magnetic, and environmental data.  相似文献   
25.
The concept of position determination using geostationary satellites as an alternative to the global positioning system (GPS) is studied. The advantage of a geostationary system is that only three, or at most four, satellites are required to cover the continental United States. A total of twelve satellites are sufficient for global coverage (excluding polar regions), or eight if only longitude and latitude, but not altitude, are measured. The system involves the determination of the range to either four geostationary satellites or, if the altitude is not measured, three geostationary satellites. The accuracy of the proposed systems are evaluated to obtain the rms error associated with position determination, and the concept for the implementation of measurements required by the systems is presented. The accuracy of the systems are adequate for civilian use in the continental United States; however, there is a degradation in accuracy as the location of the user approaches the equator.  相似文献   
26.
A simplified version of the dedicated observer scheme for detecting incipient instrument failures in automatic systems is presented. This scheme requires only a single observer, driven by a single instrument. Simple logical combinations of estimated instrument outputs from the observer with the actual instrument outputs allow small faults in all the instruments to be detected. Tests on a simulation of a practical system indicate the scheme is robust with respect to a small uncertainty in a dynamic parameter of the controlled plant.  相似文献   
27.
Sensor faults are detected in an operating automatic system by a simplified version of the dedicated observer scheme. Control inputs are augmented by a random disturbance of moderate intensity. The dedicated observer in this case is a Kalman filter, driven by a single sensor. This filter provides estimates of the outputs from the other, nonredundant, sensors. A logical combination of these functionally redundant signals with the actual sensor signals provides prompt detection of incipient faults on all instruments without false alarms. The scheme is applied to a simulation of the lateral axis control system of a hydrofoil boat in which four sensors are to be covered by the fault detection scheme. Tests indicate that the scheme is robust with respect to variations in the intensity of the random disturbance.  相似文献   
28.
Goldsten  J. O.  McNutt  R. L.  Gold  R. E.  Gary  S. A.  Fiore  E.  Schneider  S. E.  Hayes  J. R.  Trombka  J. I.  Floyd  S. R.  Boynton  W. V.  Bailey  S.  Brückner  J.  Squyres  S. W.  Evans  L. G.  Clark  P. E.  Starr  R. 《Space Science Reviews》1997,82(1-2):169-216
An X-ray/gamma-ray spectrometer has been developed as part of a rendezvous mission with the near-Earth asteroid, 433 Eros, in an effort to answer fundamental questions about the nature and origin of asteroids and comets. During about 10 months of orbital operations commencing in early 1999, the X-ray/Gamma-ray Spectrometer will develop global maps of the elemental composition of the surface of Eros. The instrument remotely senses characteristic X-ray and gamma-ray emissions to determine composition. Solar excited X-ray fluorescence in the 1 to 10 keV range will be used to measure the surface abundances of Mg, Al, Si, Ca, Ti, and Fe with spatial resolutions down to 2 km. Gamma-ray emissions in the 0.1 to 10 MeV range will be used to measure cosmic-ray excited elements O, Si, Fe, H and naturally radioactive elements K, Th, U to surface depths on the order of 10 cm. The X-ray spectrometer consists of three gas-filled proportional counters with a collimated field of view of 5° and an energy resolution of 850 eV @ 5.9 keV. Two sunward looking X-ray detectors monitor the incident solar flux, one of which is the first flight of a new, miniature solid-state detector which achieves 600 eV resolution @ 5.9 keV. The gamma-ray spectrometer consists of a NaI(Tl) scintillator situated within a Bismuth Germanate (BGO) cup, which provides both active and passive shielding to confine the field of view and eliminate the need for a massive and costly boom. New coincidence techniques enable recovery of single and double escape events in the central detector. The NaI(Tl) and BGO detectors achieve energy resolutions of 8.7% and 14%, respectively @ 0.662 MeV. A data processing unit based on an RTX2010 microprocessor provides the spacecraft interface and produces 256-channel spectra for X-ray detectors and 1024-channel spectra for the raw, coincident, and anti-coincident gamma-ray modes. This paper presents a detailed overview of the X-ray/Gamma-ray Spectrometer and describes the science objectives, measurement objectives, instrument design, and shows some results from early in-flight data.  相似文献   
29.
During 1980 and 1981, the 305-m radio telescope at the Arecibo Observatory in Puerto Rico was used to conduct a high resolution search for narrowband signals from the direction of 210 nearby solar type stars and 5 OH masers. For each star at least 4 MHz of bandwidth surrounding the 21-cm HI line and/or the 18-cm OH lines was studied with a spectral resolution of 5.5 Hz in both right and left circular polarization. The formal limit of sensitivity achieved during the course of this search varied depending upon the particular receivers available. In all cases the search could have detected a narrowband transmitter of power comparable to the Arecibo planetary radar, had any such been transmitting on the frequencies searched during the time of observation out to the distance of the farthest target star. As in previous searches, the number of "false alarms" encountered was far greater than predicted on the basis of Gaussian noise statistics. A small number of stars have exhibited signals which cannot immediately be explained in terms of astrophysical or man-made sources and deserve reobservation. This is typical of the results of previous non-real-time searches and does not yet constitute the detection of an ETI.  相似文献   
30.
This paper describes a study of those aspects of Omega navigationthat are unique to aircraft applications. The main effort of the studyis to use a digital computer to simulate the reception of Omega signals.Three principal conclusions are drawn: the poorer signal-to-noiseratio environment will not preclude reception; interfering carriers willnot preclude reception; and the required velocity-aiding accuracy isquite modest in terms of that which is readily available from inertialsystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号